Core Faculty

Mike Jewett

Mike Jewett

Assistant Professor of Chemical and Biological Engineering

2145 Sheridan Road


Evanston, IL 60208-3109

m-jewett( at )


Ph.D. Chemical Engineering, Stanford University, Palo Alto, CA

M.S. Chemical Engineering, Stanford University, Palo Alto, CA

B.S. Chemical Engineering, Bioengineering specialization (summa cum laude), University of California, Los Angeles, CA

Research Interests

Our research aims to engineer biological systems for compelling applications in medicine and biotechnology. We focus on cell-free systems, with particular emphasis on protein synthesis and metabolism. Engineering cell-free systems both tests our understanding of how life works and generates useful, cost-effective factories for manufacturing human therapeutics and valuable biochemicals that are difficult to make in vivo. Our approach is to integrate fundamental research and engineering design principles with technology development.

Our interdisciplinary efforts take advantage of synergies at the crossroads of biological and engineering science. They represent a bottom-up approach to synthetic biology. The key idea is that design and construction of biological systems will become easier and more reliable if we can develop foundational technologies that partition biology into simple modular pieces that we can directly manipulate and control. To this end, it is desirable to reduce the complexity of existing biological systems and remove unnecessary overhead (e.g. unnecessary genes and evolutionary baggage). Cell-free systems, which are decoupled from the genetic architecture of the cell, offer a unique platform to address this need. They reduce complexity, lack structural boundaries, are free from cell viability constraints, and can direct catalytic resources towards a single objective.  As a result, cell-free systems promise to catalyze a new paradigm for studying, tuning, and controlling life.

Selected Publications

  • Hong, Seok Hoon; Ntai, Ioanna; Haimovich, Adrian D.; Kelleher, Neil L.; Isaacs, Farren J., “Cell-free protein synthesis from a release factor 1 deficient escherichia coli activates efficient and multiple site-specific nonstandard amino acid incorporation”, ACS Synthetic Biology, (2014)
  • Jewett, Michael C., “Cell-free synthetic biology special issue”, ACS Synthetic Biology, (2014)
  • Jewett, Michael C.; Palmer, Megan J., “Enabling a next generation of synthetic biology community organization and leadership”, ACS Synthetic Biology, (2014)
  • Jewett, Michael C.; Gan, Rui, “A combined cell-free transcription-translation system from Saccharomyces cerevisiae for rapid and robust protein synthesis”, Biotechnology Journal, (2014)
  • Jewett, Michael C.; Schoborg, Jennifer A.; Hodgman, C. Eric; Anderson, Mark J., “Substrate replenishment and byproduct removal improve yeast cell-free protein synthesis”, Biotechnology Journal, (2014)
  • Jewett, Michael C.; Fritz, Brian R., “The impact of transcriptional tuning on in vitro integrated rRNA transcription and ribosome construction”, Nucleic Acids Research, (2014)
  • Jewett, Michael C.; Kang, Yan; Lu, Annhelen; Ellington, Andrew; O'Reilly, Rachel K., “Effect of complementary nucleobase interactions on the copolymer composition of RAFT copolymerizations”, ACS Macro Letters, (2013)
  • Hodgman, C. Eric; Jewett, Michael C., “Optimized extract preparation methods and reaction conditions for improved yeast cell-free protein synthesis”, Biotechnology and Bioengineering, (2013)